Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells.

نویسندگان

  • Rui-Dong Li
  • Zhong-Liang Deng
  • Ning Hu
  • Xi Liang
  • Bo Liu
  • Jinyong Luo
  • Liang Chen
  • Liangjun Yin
  • Xiaoji Luo
  • Wei Shui
  • Tong-Chuan He
  • Wei Huang
چکیده

We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with TGFβ1 during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rhTGFβ1 synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of TGFβ1 inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of TGFβ1 potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of TGFβ1 decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that TGFβ1 inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in G(0)/G(1) phase. Our findings strongly suggest that TGFβ1 may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of JNKs is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells

Although BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cell (MSCs), the molecular mechanism involved remains to be fully elucidated. Here, we explore the possible involvement and detail role of JNKs (c-Jun N-terminal kinases) in BMP9-induced osteogenic differentiation of MSCs. It was found that BMP9 stimulated the activation of JNKs in MSCs. BMP9-induced ost...

متن کامل

P38 and ERK1/2 MAPKs Act in Opposition to Regulate BMP9-Induced Osteogenic Differentiation of Mesenchymal Progenitor Cells

Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation and bone formation, the precise molecular mechanism involved remains to be fully elucidated. In this current study, we explore the possible involvement and detail effects of p38 and ERK1/2 MAPKs on BMP9-induced osteogenic differentiation of mesenchymal progenitor cell (MPCs). We find t...

متن کامل

Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling

Notch is an important pathway in that it regulates cell-to-cell signal transduction, which plays an essential role in skeletal remodeling. Bone morphogenetic protein (BMP)9 has been regarded as one of the most efficient BMPs by which to induce osteogenic differentiation in mesenchymal stem cells (MSCs). Understanding the interaction between Notch and BMP9 signaling is a critical issue for optim...

متن کامل

lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblas...

متن کامل

Activation of PKA/CREB Signaling is Involved in BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells.

BACKGROUND/AIMS BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cells (MSCs) although the molecular mechanism involved is largely unknown. Here, we explored the detail role of PKA/CREB signaling in BMP9-induced osteogenic differentiation. METHODS Activation status of PKA/CREB signaling is assessed by nonradioactive assay and Western blot. Using PKA inhibitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMB reports

دوره 45 9  شماره 

صفحات  -

تاریخ انتشار 2012